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SUMMARY 

A sphere in contact with a porous membrane can depart with non-zero velocity under the influence of a finite 
:force. The flow field and the viscous force resisting the motion are evaluated by reducing the Stokes equa- 
tions to a fourth-order ordinary differential equation through the use of conformal mapping. Explicit results 
are given for high and low membrane permeabilities by using regular and singular perturbation techniques 
respectively. 

1. Introduction 

The motion of  particles near porous surfaces is a phenomenon characteristic to separation pro- 

cesses. In many processes in engineering systems as well as in biological organs the motion of  a 

particle near a surface, through which fluid can penetrate, is the most important limiting step. 

Usually the macroscopic particle is small enough for inertial effects to be negligible yet large 

enough to be prevented from passing through the microscopic pores in the surface. This is equal- 

ly true during filtration of  suspensions or in the prevention of  passage of  macromolecules 
through cell membranes. 

Problems concerning the motion of  a solid sphere near an impermeable solid surface were in- 

tensively treated in the past (Stimson and Jeffery [1], Brenner [2] and a series of  papers by 

O'Neill, e.g. [3]). A common feature to these solutions is the result that the closer the particle 

to the immobile surface the larger the force acting on it. The latter becomes infinite when con- 

tact occurs at non-zero velocities. Conversely, a sphere can approach or depart from a solid sur- 

face under the action of  a finite force only at zero velocity. This characteristic stems from the 

requirement that the velocity field be single-valued at the point of  contact, and that no-slip con- 

ditions prevail there. Recently, it has been suggested that conditions at the surface of  a porous 

material contain penetration of  fluid as well as tangential slip (Beavers & Joseph [4], Saffman 

[5 ]). Clearly, both changes in the conditions may result in fundamental differences in the ki- 

nematics and the dynamics of  the sphere near the surface. In particular, non-zero departure ve- 
locities under the influence of  a finite force can be expected. 
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66 A. Nir 

Indeed, Goren [6] has recently solved for the force acting on a solid sphere approaching a 

thin permeable membrane and found that the force on the sphere remains finite as the separa- 

tion gap diminishes. Goren observed that maximum values for the force were not necessarily 

obtained at contact, depending on the magnitude of the membrane permeability. Unfortunately, 

the procedure which he used to obtain solutions is not valid at contact and definite values for 

the forces there still await exact evaluation. 

In this communication, we solve for the flow field and the force acting on a solid sphere 

slowly departing from contact with a thin permeable membrane. It is assumed that the length 

scale associated with the pore sizes is much smaller than any macroscopic scale in the field. Fur- 

thermore, no flow occurs in the lateral direction within the membrane. The sphere is imperme- 

able. In Section 2 the general problem is stated. In Section 3 we describe the use of conformal 

mapping to reduce the Stokes problem to a fourth-order differential equation in the continuous 

eigenvalue domain. The interesting functionals are discussed in Section 4, while perturbation 

methods are employed in Sections 5 and 6 to obtain exact solutions in asymptotic cases. 

2. The general equations 

Consider a solid sphere of  radius a touching a horizontal porous thin membrane. The two half- 

spaces, below and above the membrane, are filled with viscous fluid having a viscosity/a. The 

sphere is departing from the membrane in a direction perpendicular to it at a velocity V. Since 

the membrane is immobile but permeable to fluid, motion will be induced on both of its sides. 

We further neglect inertia effects in the entire space. The inertialess motion of the fluid below 

and above the membrane obeys the Stokes equations which, in view of the axial symmetry, are 

of  the form 

E4xI tl =EagJ II = 0 .  ( I )  

z,~=O 

+ 
/ /  4y '~,\~ <= 

MEMBRANE ! r,~ =0 

Figure 1 A sphere in contact with a permeable membrane 
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Here qzl and q/tI are the stream functions in the upper and lower half-spaces respectively, and 

E 2 - r  a-r -~r + dz 2 (2) 

where r and z are cylindrical coordinates as depicted in Figure 1. For further discussion, we shall 

use non-dimensional variables with distances normalized by a, velocities by V, stream-functions 

by Va 2 and pressure by ~V/a. 

On the surface of  the sphere no-slip conditions prevail, 

u z = l ,  u r=O,  (3) 

while all velocity components decay at infinity. 

The conditions at the membrane which is assumed to occupy the plane z = 0 deserve some 

attention. General boundary conditions for Stokes flow over porous surfaces were recently em- 

ployed by Jones [7] and Nir [8], following Beavers & Joseph [4]. Here, for the sake of  mathe- 

matical simplicity, we shall assume no tangential slip on both sides of  the solid membrane,  hence 

UrI = UrII = 0 at z = 0 (4) 

with I and II referring to the upper and lower sides. The continuity of  pressure and normal velo- 
city take the forms 

i i i  
u z = u z ( 5 )  

and 

UI,II _ _ 3(pI _ pI I )  
z - (6) 

where p is the pressure; 13 is a non-dimensional coefficient,/3 = K/(ad), with K being the mem- 

brane permeability and d its thickness. Note that condition (6) is valid only for unidirectional 

flow within the membrane. This particular choice of  conditions (4)-(6) will enable a direct com- 
parison with the work of  Goren [6]. 

The solution of  (1) subject to conditions (3)-(6) and the requirement that the velocities van- 
ish at infinity is facilitated by the use of  the mapping 

i 
z + ir - - -  (7) 

n + i ~  

Stokes flows for similar geometries were successfully solved using these so-called tangent-sphere 
coordinates ([9],[10],[11]). Surfaces of  constant ~ describe spheres of  radius (2 I~1) -1 , all tan- 

gent to the surface z = 0 (~ = 0) in which the thin membrane is assumed to be lying (see Fig- 
ure 1). The coordinates of  a point in space are given by 

77 r/ 
z -  ~2 +r~2 ' r ~2 +r/2 (8) 
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where ~2 + r/z is the metrical. We denote the surface of  the sphere of  radius unity by a with 
1 ot--~.  

In terms of  the mapping coordinates the operator E 2 has the form 

while conditions (3) to (6) are equivalent to, respectively, 

xlsi = _ __1 r= , __OxI jI _ 8 1 r= at ~ = a , (3 ')  
2 0~: 0~; 2 

U~/I = U•II = 0 at ~ = 0 , (4 ')  

U~ = U~ I at ~ = O, (5') 

and 

U[,II = _ 3(pI _ pI I )  at ~ = 0 .  (6') 

Note that u n and u z coincide with u r and u z only at ~ = 0. The requirement that the velocity 
vanishes at infinity should be satisfied at ~7 -+ 0 and ~ ~ 0 simultaneously. 

3. Reduction to ODE's 

The general solutions of  (1) which vanish at infinity are 

3 

f: ~ I  = (~2 +~2) - -  ~- X r I G I ( X , ~ ) j I ( X r l ) d X  

and 

where 

(9) 

and 

3 
xItII = (~2 + n 2 ) -  2- Xr~GII(~,,~)Jl(~,r~)dX, (10) 

G I = A (X) cosh X~ +B(k)  sinh X~ + C(X) k~ cosh X~ +D(X) ~ sinh X~ (11) 

G II = E ( X )  e x~ + F ( k )  k~ e x~ . (12) 

G II is of  this degenerate form to ensure that q,u remains finite near the origin (~ -~ --oo). Note 

that ~ -+ oo is a surface within the sphere and therefore outside the domain. A(X) to F(X) are six 

Journal o f  Engineering Math., Vol. 15 (1981) 65-75 



Depar tu re  o f  a sphere  f r o m  c o n t a c t  w i t h  a p e r m e a b l e  m e m b r a n e  69 

coefficients, all functions of the continuous eigenvalue X, to be evaluated via the use of condi- 

tions (3') to (6'). 
Application of (4') and (5') yields the three simple relations 

B(X) + C(X) = 0 ,  (13) 

E(X) + F(X) = 0 ,  (14) 

A(X) E(X)=0. (15) 

Here we have used the definitions 

(~2 +r/2)  Oq~ 
u n - u~ - - -  r 3~ ' 

Conditions (3') become 

and 

(~ 2 + r/2) O,V 

r Or/ 

fO ° ~r/CI(~, c0g I (Xr/)dX - - 
1 712 
2 (~2 + r/2)1/2 

oo d G  I 1 r~ 
fo M1--~-- (X,(~)J,(Xr/)dX- 2 (u2 +r/2)3/2 

Using the Hankel transform, we find that (16) and (17) become 

1 ~ 1 )e_X a G~(X,~)- - ~ ~ ( I + G  ' 

(16) 

(17) 

(18) 

d G I  (X,~)= 1 ~ e - h a  (19) 
d-T 7 " 

Upon combining (13), (14), (15), (18) and (19), four of the function coefficients can be elimi- 
nated resulting in the algebraic relation 

A(X) I 1  tgh¢ow_l+B(X)~.tghw-6o cotghco'~ 
cotghco tghco+ L~- -~ghw+tghw+coJ  

(20) 
a 2 1 ~2 ) 

_ - -  . e - C O  1 co 2 (1 + - ) + 
2 sinhco co co (sinhco + w coshw) 

where co = Xa. 
The most tedious part of the solution is the transformation of condition (6'). The harmonic 

pressure is connected to the stream function via the Cauchy-Riemann relations, viz, 

3p 1 0 
- - -  E :  ~ .  (21)  

On r O~ 
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Equation (6') is then replaced by 

~ (~2 "1"7~2) 2 o~I/I ( l  ~ E 2 ~ I  1 ~ ) 
0fl ~/ i~'/~ - fl " ~  -- 7 ~"~ E2 xItlI at ~ = 0. (22) 

After a great deal of manipulations, using the differential equation for Jl and integration by 
parts, and applying the Hankel transform, we arrive at the following fourth-order ordinary dif- 
ferential equation 

/3 (2)` 4 d4 + 28)` 3 " - ~  + 102), 2 - - ~  + 90)` ( B - A )  

= )`3 d2A 2 dA 
7)` 

(23) 

Boundary conditions for (23) stem from physical reasoning, the structure of the solution (9) 
and the constrains on the integrations by parts in the procedure to obtain (23) from (22). Thus, 
X2A()`) and )`2B()`) must be integrable as )  ̀~ 0 while A and B decay exponentially as )` ~ ~ .  

Equations (23) and (20) together with the boundary conditions outlined above provide now 
the final set for the solution of the original problem. 

4. The force on the sphere 

Before proceeding to a solution of equation (23) we discuss the force on the sphere which, 
presumably, is the most interesting functional of this problem. As indicated in the introduction, 
it is well-known (Brenner [2]) that a finite force cannot result in a departure of a sphere from 
an impermeable solid plane with velocity V. Conversely, a sphere approaching a plane on which 
no-slip conditions exist must have zero velocity at contact. These result from properties of solu- 
tions to the Stokes equations which are single-valued at the origin and elsewhere. In our case, 
with fluid allowed to penetrate into the membrane, a non-zero departure velocity, under the 
influence of a finite force, is realized with the single-valuedness of the velocity field still unaltered. 

The force on the sphere can be calculated using Stimson and Jeffery's [ 1 ] formula which re- 
duces here to 

Fs 1 
- 3 foo X2(A(X)+B(X))dX"  (24) 6nl~ Va 

Clearly, because of the conditions associated with (23), F s is finite as long as/3 > 0. Indeed, 
Goren [6], solving for the force acting on a sphere approaching a membrane, found that the 
force does not increase indefinitely as the gap separating the sphere and the membrane surfaces 
diminishes as long as/3 is not zero. At high permeabilities he suggested further that maximal 
force is not at contact. Using spherical bipolar coordinates, Goren was unable to extrapolate his 
results to contact geometry and to prove his results beyond doubt, but had to resort to lubrica- 
tion-theory approximations. In the next sections we shall demonstrate that Goren's conjecture 
is correct and obtain rigorously the asymptotic results for the cases/3 ~ ~ and/3 ~ 0. 
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5. A sphere in contact with a highly permeable membrane,/3 > >  1 

Assume a regular perturbation with A(X) and B(X) expanded in the forms 

1 1 
A (X) = A o (X) + ~ A, (X) + O ( - f i ) ,  

1 1 
B (X) = Bo (X) + ~ B, (X) + 0 ( 7 ) .  

Substitution of (25) in (23) shows that to O(1) the differential equation reduces to 

(2X4 d 4 d 3 
+ 28X3 d - ~  + 102X= 

The homogeneous solutions of (26) are 

1,X -2,?-21nx,  and X -4. 

d) 
dX 2 + 9 0 X ~  (Bo-Ao)=~x(Bo-Ao)=O. 

Hence, in view of the exponential decay of A and B, we obtain 

Bo-A0 = 0, 

where, by using (20), 

1 1 
1 + - + - -  ( 1 - e  -2e°) 

Bo =Ao 10~ 2 CO 209 2 
= - -  09 = ~,c~. 

2 1 (l_e2tO) ' 09-- ( . ,32  _ -~  

The forces can now be evaluated, with a = (2a)-1, 

(25) 

(26) 

(27) 

(28) 

(29) 

__lFs[ 2 c 1 
- .Jo ~ X2Bo(X)dX = 1.0722 + O ( ~ ) .  (30) 67rpVa 3 p 

F s agrees exactly with Goren's evaluations for small gaps at the limit/3 -+ co. 
The equation for the first order perturbation is now of the form 

~x(BI_A1)=X(X2 d 2 d ) 
~ - + 7 X - -  +8 Ao. (31) 

dX 

Since 
I a 2 093 

--(..~2 (32) Ao - (1 + - 7  + 0(09 s))  as X-,  0 
2 D 

while A o decays exponentially as X ~ ~ ,  B 1 - A 1 must be of O(X 2) as X -+ 0 and decay expo- 
nentially at infinity. By (24) we have 

IFsl 1 1 
6rq~Va 1.0722= 3---~ fo ~ ~(A,  + B , ) d X + O ( 7  ). (33) 

Journal of Engineering Math., Vol. 15 (1981) 65-75 



72 A. Nir 

6. The case of  low permeability,/3 < <  1 

When the permeability of  the membrane is low and/3 is small, as in most practical physical real- 

izations, the solution to equation (23) becomes singular. There exists a boundary layer in the 

eigenvalue domain near X = 0 and, therefore, we must resort to singular-perturbation techniques 

to obtain the functions coefficients in the form of  matched asymptotic expansions. 

The outer region 

Assume A(X) and B(~,) o f  the form 

A(X)= E fn (3) An (X), B(X)= = n = o gn (3) An (X), 

where fo =go = 1 andfn+ 1 = o(.fn),gn+ 1 = O(gn). From equation (23) we obtain 

(34) 

X2 d2Ao dan 
+ 7X + 8A0 = 0 (35) 

dh2 

with the homogeneous solutions ~-2, X-4. Hence to this order, An = 0 and Bo is evaluated using 

(20). Obviously, Bo decays exponentially as ?, ~ 0% however, 

1 1 
a2 I + -- + - -  (1--e -2~°)  

co 2602 24 1 
Bo = - 2 " sinh 26o - co 2 ~ - --~ as 2t ~, 0, (a = -~ ) .  (36) 

Thus, a thin boundary layer exists near X = 0. The solution within this layer should be matched 

to (36). 

The inner region 

Consider expansions of  the form 

OO OO 

A (v) =nZO G (3)tin (v), %3 0 an (3)hn (37) 

where v = X//3 ~. Expanding for small 13 and balancing the appropriate terms in (20) and (23) we 
1 1/2 _ /3 - s /4  find that ~ = ~ , Fo = 13- and Go - . The equations for.4o (v) and/}o (v) now become 

v 3 1 
An + ' ~ / } 0  = - 2v--~-- 

(38) 

and 

( /}o-Ao)  = v 3 d2d° dAo dv --'---S- + 7v2 dv + 8vX° (39) 
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I where for convenience we have set a = i without loss of generality. Ao and/~o must satisfy the 
boundary conditions at X ~ 0 (u -+ 0) and match the outer solution (36) as v -~ o o .  

Substituting (38) into (39) yields 

t d 4 d 3 /)6 d 2 13v s d 35 l 
2l;4 __d/; 4 + 2 8 / ) 3  dp 3 + (102v2 + ~ )  d_.y + (90v + _ .  ~ )  ~ + - ~  /;4 i*/}° =0" 

(40) 

It is useful to study the behaviour of the solutions of (40) at u ~ 0 and u -+ oo. In the former 
case we have as before 

1,v -2, /)-2 lnu and u -4, (41) 

where the last solution is not permissible due to the conditions at/) ~ 0. As/; ~ ~ we observe 
that 

_ A d 2 I u 

B01 =/) s, Boil = p-7, and - -  BOlli,l V "  ~ -- exp (_+ i ~ ) 
d/) 2 P ~/48 

where obviously the diverging oscillatory solutions/~011i and/~oi v are not appropriate. 
The general inner solution, to this order, which matches the outer solution is of the form 

(42) 

Bo = -24/?ol + Cz/~oli. (43) 

Unfortunately, this form does not enable a unique determination of/} 0 . Uniqueness can never- 
theless be secured in several ways as outlined in the Appendix. Once/}o is obtained uniquely 
the forces can be evaluated by constructing a composite expansion which is uniformly valid 
throughout the domain. 

The force 

It is clear that, to this degree of approximation, the expression for the force acting on the 
sphere will not involve integration over A(X) since B(X) is O(/3-s/4) but A(X) is 0 (9- i /2 ) ,  
and, therefore, negligible. Construction of a composite expansion yields 

_ _  fo ~ 24 Fs _ 1 X 2 {Fo(/3)/}o (v) +Bo(X) + -~- }dX+O(1).  (44) 
6zrtlVa 3 

The combination of the last two terms in the integral is integrable but O(1) and thus can be 
ignored to this order of magnitude. Hence, with X = u/3, 

= I f°~ / 0"816+O(1)" (45) IFsl . 1 u2Bo(u)du +O(1 ) -  {jl/z 
67rp Va 3/31/2 

This result confirms Goren's [6] coefficient (2/3)1/2 obtained from lubrications approxima- 
tion and validates his calculations for small gaps at large 13-1 
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7. Concluding remarks 

When considering the flow around a sphere departing from a permeable membrane and the force 

acting on it, the tangent-sphere coordinates enable a reduction of the Stokes equations to a 

fourth-order ordinary differential equation. This equation can be solved numerically for any 

permeability or through the use of regular and singular perturbation for the asymptotic cases 

> >  1 and/3 < <  1, respectively. Our results at contact confirm and supplement the results ob- 

tained by Goren [6] for the case of  a sphere approaching a thin permeable membrane with fi- 
nite separation. It is now clear that at high permeabilities the maximum force acting on the 
sphere is not at contact. 

Appendix 

One route to obtain the correct combination of/}oi and/~0 ~I in (43) is as follows: Suppose that 

we can find the exact combinations of  the solutions near v ~ 0 (41) associated with each of the 

solutions J~o I and Bo II" Since the first three are permissible it is sufficient to choose a combina- 

tion of Bo x and Bo II which eliminates the fourth singular one. This procedure, however, is not 

obvious since the ability to analytically match solutions over the semi-infinite domain of v is 

rarely possible (Dingle [12]). 

Another possibility is via the definition of the force. Multiplying equation (40) by v 2 and in- 

tegrating over the domain using integration by parts, we obtain 

d/•o 
v 8 + 5v7/~o 

fo'° V (v)dv = (A-I) 
dv 

lira 
v~ oo 288 

Note that, since 

24 
B°I = - 7 + O(v-9) 

and 

C2 
Boii = - - 7  + O(v -n ) (A-2) 

as v -~ 0% the RHS of (A-l) simply becomes (72/144. Comparing this with a direct integration 

of (43) we get 

24 f :  v 2 Boxdv 
6'2 = (A-3) 

1 f: v 2/~oi I dv 
14'~ + 

The numerical procedure which we have adopted inherently uses the first of the above meth- 

ods. The results were then checked to ensure that (A-3) is satisfied. Substituting y = v3/~o we 
find that equation (40) is transformed to 
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t2p4 d4 d 3 ( _  P6)  d 2 [  7 v S ~ d  ( 8v4 ) t y  
- - d r  4 +4v3 - -  + d v  3 6v2+  - ~  - -  + [6v +-~-ff-) " ~ V d v  2 + - 6  + - -~-  = 0  

(A-4)~ 

where (41) and (42) become, respectively, 

v 3, v, v In v and p-1 , (A-5) 

v-2 v-4 and d2y  1 e x p ( + i  ~ ) .  (A-6) 
' dv  2 v 

Equation (A-4) is then integrated using a 5-diagonal Gauss elimination procedure requiring that 

y (0 )  = 0 and y decay as 24/v 2 as v -+ oo. The limit of  v 4 (y - 24v -2) as v-~ oo is then checked 

and compared with the value of  C2 obtained from the force. 
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